
White Paper

Automating the Advanced GNSS
Spoofing Simulation Tutorial
Jaemin Powell
Applications Engineer, Orolia Defense & Security

Introduction
Utilizing the Skydel’s Python API can provide major advantages in creating a test script. It will allow the
user to quickly automate the setup of the BroadSim environment, while also allowing simpler environment
management during a simulation. This paper will provide a step-by-step walkthrough on how to start the
intuitive automation process and provide an example script from the Advanced GNSS Spoofing Simulation
Tutorial. The script will include a summary of scripting steps and an in-depth description of the classes and
functions used to communicate with Skydel.

Scenario Description
The intent of this scenario is to provide a simulated path across a bridge with two different types of threats
working together with a common goal of capturing the receiver. The first threat is an AWGN (Additive White
Gaussian Noise) knockout jammer. This jammer will reduce the GNSS signal strength as the receiver gets
closer to it until the receiver loses lock and attempts to reacquire the GNSS signals. The second threat is
a spoofer transmitter. The spoofer will be configured for stronger signals so that when the receiver is in a
vulnerable state due to the knockout jammer, the receiver will be more likely to re-acquire on the spoofing
signals. If the threats are successful, the receiver will follow the spoofer path and diverge from the truth
simulated path.

Automation Setup
Follow the steps below to get an export of the python scripts that are needed to fully automate the script:

1. Set up the Skydel instances by following along with the Advanced GNSS Spoofing Simulation Tutorial video. This
provides visual step-by-step instructions to initialize the Skydel instance (Broadsim → Skydel) and the Skydel
Spoofer (1) instance (Broadsim → Skydel Instances → Skydel Spoofer Instance 1).

2. In the “Automate” tab, select “Export to Python” on the Skydel instance, then on the Skydel Spoofer instance to
export a fully functional python script for each instance. The standard folder location of the exported scripts is “/
opt/broadsim/SDX/API/Python”. Figure 1 and Figure 2 show how the exported python files will look.

Script Description
When opening the exported python files, it is important to notice that these scripts replicate the content of
the commands in the Automation tab of Skydel. These scripts give the user a great jump start in automating
the BroadSim test.

Starting at line 5 of Figure 1 and Figure 2, are the imports of files needed to execute the functions throughout
the rest of the script. The * in some of the import lines command the script to import all variables, classes,
methods, etc. in the file without having to prefix into them when they are trying to be referenced in the script.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

https://youtu.be/6Sp1_c7enxo

Line 10 of Figure 1 initializes an instance, named “sim”, of the RemoteSimulator() class (or the
RemoteSpooferSimulator() class in Figure 2). “sim” can communicate with the Skydel instance or
the Skydel Spoofer instance by first initializing the connection using th e IP and instance ID parameters
in the connect() command (e.g. sim.connect(ip=”localhost”,id=0)). connect() defaults
to an IP of “localhost” and either an ID of 0 for the RemoteSimulator() instance or 1 for the
RemoteSpooferSimulator()instance. ID is then incremented by 1 for each new instance needed in Skydel.

connect()connect() Example – If a scenario is needed with two RemoteSimulator() instances (aka
Skydel instances) and two RemoteSpooferSimulator() instances (aka Skydel Spoofer
instances), then the RemoteSimulator() connection would be with an ID of 0 and 1 and the
RemoteSpooferSimulator() connection with an ID of 1 and 2.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

Figure 1: Export to Python of the Skydel instance.

Figure 2: Export to Python of the Skydel Spoofer instance.

After “sim” has been connected, it can send commands to the Skydel instance, by using the call() method.
The call() method will be used to send commands to the Skydel instance at a specified time until “sim”
is disconnected (i.e. sim.disconnect()). Below is a list of the commands (with their description and the
associated Skydel command) that are used by the call() method in Figure 1 and Figure 2 above:

New() – Open a new configuration based on the command inputs of discarding the current configuration and
loading the default configuration.

SKYDEL COMMAND File → New Configuration

SetModulationTarget() – Adds radio outputs by setting the hardware type, file path, IP address, clock and
unique identifier of the radio.

SKYDEL COMMAND Settings → Output → Add DTA-2115B

ChangeModulationTargetSignals() – Initializes the radio with a GNSS signal selection output type, minimum
and maximum sampling rate, frequency band, signal types, output gain, Gaussian Noise, and a unique identifier.

SKYDEL COMMAND Settings → Output → Radio # → Signal Selection → Edit → Select GNSS, Upper
 L-Band or GNSS, Lower L-Band under Output Type

 To get the full script command, edit Radio 1 and under Signal select GPS L1 C/A and Galileo E1.

ChangeModulationTargetInterference() – Initializes the radio with a GNSS signal selection output type,
minimum and maximum sampling rate, frequency band, signal types, output gain, Gaussian Noise, and a unique
identifier.

SKYDEL COMMAND Settings → Output → Radio # → Signal Selection → Edit → Select Interference
 under Output Type

To get the full script command, edit Radio 3 to the following:
 Under Output Type, select Interference
 Under Central Frequency, check Choose with signal selection and select GPS L1 C/A and Galileo E1.

AddSpoofTx() – Adds radio outputs by setting the hardware type, file path, IP address, clock and unique identifier
of the radio.

SKYDEL COMMAND Settings → Spoofers → Add Spoofer

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

EnableSpoofTx() – Enables or disables the spoofer transmitter using an enable status and the spoofer
transmitters unique identifier.

SKYDEL COMMAND Settings → Spoofers → [Spoofer Name] → General → Enabled

 To get the full script command, uncheck Enabled.

SetSpoofTxRefPower() – Sets the reference power (dBm) of the spoofer transmitter using the reference power
and the spoofer transmitter’s unique identifier.

SKYDEL COMMAND Settings → Spoofers → [Spoofer Name] → General → Reference Power

 To get the full script command, set the Reference Power to 2.00 dBm.

SetSpoofTxFixEcef() – Sets the fixed ECEF position (m) and orientation (rad) of the spoofer transmitter using
the ECEF x, y and z position, the yaw, pitch and roll orientation and the spoofer transmitter’s unique identifier.

SKYDEL COMMAND Settings → Spoofers → [Spoofer Name] → General → Trajectory → Fixed Edit

Skydel uses the LLA position and converts the position to ECEF coordinates. To get the full scrip command,
set the LLA position to:

 Latitude = 37.80188803°
 Longitude = -122.51448154°
 Altitude = 2 m

AddIntTx() – Adds the interference transmitter and initializes its motion type, and reference power using the
name of the interference transmitter, enable status, interference group number, motion type, transmitter reference
power and the interference transmitter’s unique identifier.

SKYDEL COMMAND Settings → Interference → Add Dynamic

To get the full script command, set the Reference Power to 5.00 dBm.

SetIntTxAWGN() – Sets an AWGN interference signal to the interference transmitter by using the enable status,
central frequency, power relative to the transmitter reference power, bandwidth, interference transmitter’s unique
identifier, AWGN signal’s unique identifier, seed, and interference group number.

SKYDEL COMMAND Settings → Interference → [Interference Name] → Signal → Add AWGN

To get the full script command, edit AWGN jammer’s bandwidth to 3 MHz.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

SetIntTxFixEcef() – Sets the fixed ECEF position (m) and orientation (rad) of the interference transmitter
using the ECEF x, y and z position, the yaw, pitch and roll orientation and the interference transmitter’s unique
identifier.

SKYDEL COMMAND Settings → Interference → [Interference Name] → Trajectory → Fixed Edit

Skydel uses the LLA position and converts the position to ECEF coordinates. To get the full script command,
set the LLA position to:

 Latitude = 37.82553065°
 Longitude = -122.47836837°
 Altitude = 2 m

SetGpsStartTime() – Sets the simulation start date and time using the datetime python library.

SKYDEL COMMAND Settings → Start Time → Custom Time

 To get the full script command, edit the Date to 21 Jun 2020 and the Time to 07:00:00.

SetVehicleTrajectory() – Sets ONLY the vehicle trajectory type, it does not import the route of the vehicle.

SKYDEL COMMAND Settings → Vehicle → Body → Trajectory → Select Vehicle Simulation

Once the Skydel instance and the Skydel Spoofer instance are completely setup, the scenario is ready to start
using the sim.start() command. Notice that only the Skydel instance needs the start() and stop()
because the AddSpoofTx() uses the address and instance ID of the Skydel Spoofer instance. Synchronizing
these instances makes the Skydel instance the master and the Skydel Spoofer instance the slave. So, starting
or stopping the simulation in the Skydel instance, starts or stops the simulation in the Skydel Spoofer instance.
The sim.stop() command will stop the simulation at a specified amount of time. However, before stopping
the simulation, other commands need to be sent in.

In this example, the spoofer transmitters needs to be enabled to capture the receiver. To send in commands
during the simulation, use either the post() method or the call() method that is used for most of the
script. Both commands take in a command parameter and a timestamp to send in the command. Line 30
of the Figure 1 shows an example of how the post() method is used by sending in the EnableSpoofTx()
command 174.842 seconds into the simulation time. Replacing post() with call() will execute the
same command. The only difference between the methods is that call() will output a success command
that can be seen in the command prompt window when the script is executed.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

Next Steps
To fully automate the spoofing test there are a couple areas that need to be updated. The first update is to
reference the scripts to each other or merge them. The simplest way is to copy the Skydel Spoofer instance
export and paste it to the other exported script. The RemoteSpooferSimulator() instance will need to
be renamed from sim in order for the script to talk with both instances in the same script.

The second update is to define the trajectory routes of the truth and spoof signals as .csv files instead of the
.kml files that were used in the tutorial. This also includes writing a function that parses through the .csv file
and sends the information to Skydel. The section below outlines one way to create a .csv file using a .kml
file in the BroadSim. In the Python API (/opt/broadsim/SDX/API/Python) folder there is a script, example_
create_route_csv.py (Figure 3), that provides an example on how to parse through a .csv file and send the
information to Skydel through an instance command. Below is a list of the commands, not described in the
previous section, and the functions that are used by the sim instance and provided by the Python API in
Figure 3:

Lla() – Instance of the Lla() class that contains the latitude (rad), longitude (rad) and altitude (m) position.

toRadian() – Converts value from degrees to radians.

setVerbose() – Sets the status of the verbose parameter throughout all instance commands. If true, every time a
command is executed the command prompt will output a brief description of the sim command.

beginRouteDefinition() – When the vehicle trajectory is set to “Route”, this command initializes the sim
instance to accept route speed and LLA or ECEF positions.

pushRouteLla() – After the beginRouteDefinition() command has been executed, this command can be used to
send one instance of speed (m/s) and LLA position (using the Lla() class).

endRouteDefinition() – When the route has been defined for sim, the route definition can be closed and this
command will output the count of nodes that were sent in since the beginning of the route definition.

NOTE: The equivalent Skydel command of the commands and functions above is in Settings →
Vehicle → Body → Trajectory → Vehicle Simulation Edit → Import CSV with speed limits, Next →
Select .csv file, Open.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

Along with the proper imports, the Figure 3 example script can be used to define the route definitions for the
Skydel instance and the Skydel Spoofer instance. With some adjustments, the python exports can quickly be
made into a fully automated script. All that remains is to execute the script by following the steps outlined in
the “Executing a Python Script” section. The script will then initialize both instances with the set-up steps
(including the definition of the routes for the simulation and the spoofer), start the simulation, and turn on
the spoofer transmitter at the specified time. This will reduce the risk of user error and provide a repeatable
simulation for data analysis.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

Figure 3: Parsing .csv files example script, example_create_route_csv.py

Creating a Trajectory File Using BroadSim
For this example, a trajectory .csv file was created from the original .kml file using Skydel by following the
steps below:

1. Open a new configuration in the main Skydel instance.

2. Go to Settings → Output and Add one DTA-2115B Radio.

a. In Signal Selection, click Edit and under Signal select GPS L1 C/A and Galileo E1.

3. Go to Settings → Global → Logging and select Raw Logging (csv) at 10 Hz or 100 Hz.

4. Go to Settings → Vehicle → Body and select Vehicle Simulation.

a. Click Edit, select Import KML then click Next.

b. Click Select File and find the .kml file that needs to be in .csv format (Spoof_Tutorial_Video_
Trajectory_2.kml or Truth_Tutorial_Video_Trajectory_2.kml) then select Open.

c. Click Next and select a speed of 80.00 km/h then click Finish.

5. Click Start and let the simulation run to completion. The .csv trajectory file will be in the Logging Folder.
The location can be found in Settings → Global → Logging.

Example Script
The advanced_gnss_spoofing_simulation_tutorial.txt is an example of a python script that shows the
transition that can be made from the exported files. The script has a structured arrangement to increase
readability. It summarizes steps that are executed and provides a description of the classes and functions
that are used to communicate with Skydel. The Vars() class includes the names of variables that are used
throughout the script. It allows the user to easily make updates to the scenario. Each class and function in
this script has a brief description of the functionality and its parameters in the docstring. After the imports,
the main() function is the starting point for the script execution. Please begin reading through the main()
function and the rest of the example script for more of a description of the Skydel API integration into the
Python environment.

Executing a Python Script
After the python script has been completed the next step is to properly set up Skydel so the script can
communicate with Skydel. All the Skydel instances that the script is going to communicate with needs to be
open. For this script, the Skydel instance (Broadsim → Skydel) and the Skydel Spoofer (1) instance (Broadsim
→ Skydel Instances → Skydel Spoofer Instance 1) needs to be opened.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

When both instances have been opened the script is ready to be executed. There are two different ways to
execute the python script. The first and simplest way is to go to the python script location, right click on the
.py file and select “Python (Execute)”. This will briefly open a command prompt window where it will print
out parts of the script that have been commanded to print out as well as traceback information of scripting
errors, if any, that have been caught. Unfortunately, when the script has been completed the command
prompt window will close without saving any of the information that was printed out. This execution process
is good to do when the script runs through without any errors.

The second way is to:

1. Open a command prompt window by pressing Ctrl+Alt+T.

2. In the command prompt window, then type “cd [.py folder location]” and press Enter.

a. “cd” stands for change directory.

b. The “/opt/broadsim/SDX/API/Python” directory should be the folder location of all python script
examples provided by Skydel as well as any python scripts that were created to automate testing.

NOTE: If new folders are created for the python script then the imports in the python script may
need to be updated.

3. Type “python [script name]” and press Enter to execute the python script.

a. For an example, please see Figure 4.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

Figure 4: Command prompt window executing the example script.

The script will then execute and print out like the first process. The only difference will be that the command
prompt window will remain open until it is closed by the user. Keeping the command prompt window open
will allow the user to more easily debug scripting issues that they may run into by providing script traceback
information. See Figure 5 for an example of how the script will look when it is executed using the command
prompt window.

Specifications subject to change or improvement without notice
© 2020 Orolia Defense & Security

www.OroliaDS.com

White Paper | Automating the Advanced GNSS Spoofing Simulation Tutorial

Figure 5: Example script executing and running on Skydel.

	Automating Advanced Spoofing Whitepaper Cover Page - compressed
	Automating Advanced Spoofing Whitepaper

