BroadSim Solo
Single Output Software-Defined GNSS Simulator

What is BroadSim Solo?
Orolia Defense & Security's BroadSim Solo was developed to simplify the creation of advanced jamming scenarios. BroadSim Solo supports high dynamics and jamming. Powered by Orolia's Skydel GNSS simulator engine, BroadSim Solo is able to simultaneously simulate multiple constellations including: GPS, GLONASS, Galileo, Beidou, QZSS, NavIC, SBAS. With high-performing hardware, a robust and innovative software engine, and an intuitive user interface; BroadSim Solo outperforms and exceeds features offered by the competition.

Why Choose BroadSim Solo?
BroadSim Solo is revolutionizing the GNSS industry because of its extraordinary flexibility, low cost, upgradability, and rapid development cycles. Leveraging the Skydel navigation engine and commercial-off-the-shelf (COTS) software-defined radios (SDRs), simulation of GNSS signals can be achieved at a fraction the cost of today's industry standards. The ability to generate military and multi-constellation signals on COTS hardware maximizes scalability, value, and time to market.
Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 Hz Simulation iteration rate</td>
<td>Width: 3.8 in</td>
</tr>
<tr>
<td>Advanced jamming</td>
<td>Depth: 9.4 in</td>
</tr>
<tr>
<td>Live sky time synchronization</td>
<td>Height: 8.5 in</td>
</tr>
<tr>
<td>On-the-fly scenario re-configuration</td>
<td>Weight: 8 lbs</td>
</tr>
<tr>
<td>6 DoF receiver trajectories</td>
<td>Power: 500 Watts</td>
</tr>
<tr>
<td>Flexible licensing & upgradability</td>
<td>SIGNAL PROPAGATION & ERRORS SIMULATION</td>
</tr>
<tr>
<td>High-end performance (precision, resolution, ultra-high dynamic motion)</td>
<td>Intel i5-9300 processor</td>
</tr>
<tr>
<td>Simulate hundreds of satellites in real-time using off-the-shelf graphics cards (GPU)</td>
<td>64 GB DDR4 Memory</td>
</tr>
<tr>
<td>Differential GNSS and multi-vehicle simulation (Real-Time Kinematics - RTK)</td>
<td>10 MHz and 1 PPS inputs for synchronization</td>
</tr>
<tr>
<td>Comprehensive and intuitive API (Python, C# and C++ open source client)</td>
<td>1x NVIDIA GPU</td>
</tr>
<tr>
<td>Scalable and highly flexible architecture using software-defined radios</td>
<td>1 RF output (DekTec Radio)</td>
</tr>
</tbody>
</table>

Advanced Jamming

- No additional hardware needed to generate jamming signals
- Unlimited # of jamming signals generated on 1 RF output
- Set power level, modulation, location for each jamming signal
- Complete jamming control through the Skydel GUI and/or API
- Specify the location and power of jamming transmitters. BroadSim calculates the jamming power at the receiver based on the location and jamming parameters.

*GPU limited

SIGNAL PROPAGATION & ERRORS SIMULATION

- Multipath
- Additive pseudorange ramps
- Satellite clock error modification
- Navigation message errors
- Ionospheric and tropospheric models
- Antenna pattern models
- Relativistic effects
- Pseudorange / ephemeris errors

CONSTELLATIONS

GPS Codes:
- Open: L1-C/A, L1C, L1-P, L2-P, L2C, L5
- Encrypted: L1-M-AES, L2-M-AES

GLONASS:
- G1, G2

BeiDou:
- B1, B1C, B2, B2A

Galileo:
- E1, E5A, E5B, E5 AltBOC, E6

QZSS:
- L1-C/A, L1C, L1S, L5, L5S

SBAS:
- WAAS, EGNOS, MSAS

NavIC:
- L5

SIMULATION CAPABILITIES

Signal Dynamics:
- Max relative velocity: 1,500,000 m/s
- Max relative acceleration: no limits
- Max relative jerk: no limits

Receiver Trajectory Simulation:
- Static
- Circle
- Car trajectory with integrated maps
- Import arbitrary tracks/routes from NMEA, CSV, or KML files
- Spacecraft (LEO/GEO orbits)
- Hardware-in-the-loop (HIL)

Operating System:
- Custom Linux for security and performance

www.OroliaDS.com

sales@OroliaDS.com